Bowling is right up robot's alley

Science: Engineers use high-tech equipment to help professional bowlers in the pursuit of greater accuracy.

April 10, 2000|By Enella Saunders | Enella Saunders,New York Times Syndicate

The world's first bowling robot hunkers down in an alley in Muskegon, Mich., plotting its next strike. Ten feet high and 20 feet long, with an arm the size of a howitzer and springs like rocket launchers, Throbot weighs more than 8 tons. Stored in its Pentium-powered brain are tens of thousands of throws by dozens of human bowlers, their exact spin, velocity and position recorded by video cameras, ultrasonic and infrared sensors, and a computer-aided tracking system.

"It's kind of scary," says Bill Orlikowski, a professional bowler whose throws the machine often imitates. "I sit behind it and get the same feeling as when I'm bowling."

Scarier still, to the average weekend player, may be the sheer scientific sophistication of modern bowling. Professional bowling now requires space-age equipment -- urethane balls, plastic-coated pins, lanes laser-inspected for smoothness -- and true success is measured in thousandths of inches.

The key to getting strikes, of course, is slamming the ball into the "pocket" -- for right-handers, the space between the first pin and the one angled behind it to the right.

But that's only the beginning. A ball that hits the pocket straight on will deflect away from the pins, rather than ricocheting through the pyramid. To knock down every pin, it should hit the pocket after veering six degrees from its original path, says Roger Dalkin, executive director of the American Bowling Congress. "But you have to hit a target one inch wide that's 60 feet away, and more hook equals less accuracy."

That's where science and technology can help. Beneath a bowling ball's urethane shell lies a dense core of polyester infused with calcium carbonate or barium sulfate. This structure lowers a ball's inertia by concentrating its weight in the center, thus helping the ball to roll faster and more easily.

A slightly off-center, irregularly shaped core also lends itself to sidespin, which makes a ball curve down the lane. To see what works best, bowling engineers use computers to model balls. When a prototype is ready at the Brunswick Bowling research center in Muskegon, Throbot gets it.

Not long ago, Bill Wasserberger, Brunswick's director of high-performance bowling-ball research and development, placed one of his creations into Throbot's paw -- a U-shaped chuck, set at a 10-degree angle -- and set it spinning.

When the ball reached 300 revolutions per minute (the forward rotation an average bowler can achieve), the giant arm swung back, locked with a thunk and then slowly tightened its springs.

"A solid professional bowler has about an inch-and-a-half variation five feet down the lane," Wasserberger said. "Throbot has between two- and four-tenths of an inch." By the time the arm hurtled forward and the ball blasted out at a programmed height and angle, a strike seemed preordained. Yet even Throbot can't control every variable.

To help maintain a ball's speed, bowling lanes are usually coated in mineral oil once or twice a day, Wasserberger explained. In a typical bowling alley, the edges of the lane are lightly oiled, and the last 20 feet are left dry. That way, a ball with sidespin can better grip the lane, curving clear of the gutter and hooking into the pocket at the end.

But lane oil is hardly a constant. Alley owners can slather their lanes with various types and quantities of it. Professional lanes are coated with an even layer of oil across their entire width, but they still suffer from patchy distribution as balls spread the oil around. Because a bowler can't see the oil pattern from the top of the lane, his first toss is a blind trial. After that, he can adjust his throw, try a different ball or, as a last resort, sand or polish his original ball to alter its coefficient of friction.

In order to get rid of some of the guesswork, Wasserberger's engineers had given the ball he was testing an arrow-shaped core and a shell made of a new kind of urethane called Proactive. The core made the ball change its axis as it rolled, so a dry part of the ball touched by the lane on every turn, thereby improving its grip.

"By the time the ball gets to the back part of the lane, you get an increase in hooking action," Wasserberger said. Whenever the ball hit an especially oily patch, special particles in the urethane shell (Wasserberger wouldn't reveal their composition) increased the ball's traction.

To demonstrate the difference such small changes can make, Wasserberger had Throbot try the exact same throw with a more traditional ball. This time, it swung short of the pocket.

In theory, there is no limit to how precise and powerful a bowling ball could be made. But the American Bowling Congress and the Women's International Bowling Congress keep a sharp eye on innovation.

Baltimore Sun Articles
Please note the green-lined linked article text has been applied commercially without any involvement from our newsroom editors, reporters or any other editorial staff.